Exploration of Metamodeling Sampling Criteria for Constrained Global Optimization

نویسندگان

  • MICHAEL J. SASENA
  • PANOS PAPALAMBROS
  • PIERRE GOOVAERTS
چکیده

The use of surrogate models or metamodeling has lead to new areas of research in simulation-based design optimization. Metamodeling approaches have advantages over traditional techniques when dealing with the noisy responses and=or high computational cost characteristic of many computer simulations. This paper focuses on a particular algorithm, Efficient Global Optimization (EGO) that uses kriging metamodels. Several infill sampling criteria are reviewed, namely criteria for selecting design points at which the true functions are evaluated. The infill sampling criterion has a strong influence on how efficiently and accurately EGO locates the optimum. Variance-reducing criteria substantially reduce the RMS error of the resulting metamodels, while other criteria influence how locally or globally EGO searches. Criteria that place more emphasis on global searching require more iterations to locate optima and do so less accurately than criteria emphasizing local search.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Metamodeling Sampling Criteria in a Global Optimization Framework

The use of approximate models or metamodeling has lead to new areas of research in the optimization of computer simulations. Metamodeling approaches have advantages over traditional techniques when dealing with the noisy responses and/or high computational cost characteristic of many computer simulations, most notably those in MDO. While a number of methods in the literature discuss how to expl...

متن کامل

Review of Efficient Surrogate Infill Sampling Criteria with Constraint Handling

This paper discusses the benefits of different infill sampling criteria used in surrogate-model-based constrained global optimization. Here surrogate models are used to approximate both the objective and constraint functions with the assumption that these are computationally expensive to compute. The construction of these surrogates (also known as meta models or response surface models) involve...

متن کامل

A New Hybrid Flower Pollination Algorithm for Solving Constrained Global Optimization Problems

Global optimization methods play an important role to solve many real-world problems. Flower pollination algorithm (FP) is a new nature-inspired algorithm, based on the characteristics of flowering plants. In this paper, a new hybrid optimization method called hybrid flower pollination algorithm (FPPSO) is proposed. The method combines the standard flower pollination algorithm (FP) with the par...

متن کامل

Multiobjective Imperialist Competitive Evolutionary Algorithm for Solving Nonlinear Constrained Programming Problems

Nonlinear constrained programing problem (NCPP) has been arisen in diverse range of sciences such as portfolio, economic management etc.. In this paper, a multiobjective imperialist competitive evolutionary algorithm for solving NCPP is proposed. Firstly, we transform the NCPP into a biobjective optimization problem. Secondly, in order to improve the diversity of evolution country swarm, and he...

متن کامل

Quasi-Newton Methods for Nonconvex Constrained Multiobjective Optimization

Here, a quasi-Newton algorithm for constrained multiobjective optimization is proposed. Under suitable assumptions, global convergence of the algorithm is established.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2000